EW STANDARD ACADE

CLASS: 11TH Time: 2 hours Date: 28-04-25

length 55.3 m and breadth 25 m after rounding off the value for correct significant digit is:

	PHYSICS			14. Which of the following pairs does not have		
1.	Light year is the unit of	f		similar dimensions?		
	(a) time	(c) velocity		(a) Stress and pressure		
	(b) distance	(d) acceleration		(b) Tension and surfac		
2.	\mathcal{C}				nd angular momentum	
	(a) Zero	(b) 1		(d) Angle and strain.		
	(c)-1	(d) none of these.	15.	Length cannot be mean		
3.	Order of magnitude of	radius of earth in metre		(a) Fermi	(b) debye	
	is			(c) micron	(d) light year.	
	(a) 10^6	(b) 10^{-6}	16.	The dimensions of toro	que are:	
	(c) 10 ⁷	(d) 10 ⁴		(a) $[M L^3 T^{-3}]$ (c) $[M L^2 T^{-2}]$	(b) [M L ⁻¹ T ⁻¹]	
4.	Parsec is the unit of	42.554		(c) $[M L^2 T^2]$	(d) [M L ⁻²]	
	(a) Time	(b) Velocity	17.	Using mass (M), lengt		
_	(c) Pressure	(d) Distance.		current (A) as fundame		
5.	Dimensional formula	for angular momentum		dimensions of permeal	oility are:	
	1S	(1) 52 5 7 2 m - 12		(a) $[M^{-1}LT^{-2}A]$	(b) $[M L^{-2} T^{-2} A^{-1}]$	
	(a) $[M L^2 T]$	(b) $[M L^2 T^{-1}]$	1.0	(c) $[ML T^{-2} A^{-2}]$	$(d) [MLT^{-1}A^{-1}]$	
_	(c) $[M^{-1}L^{-1}T^{-2}]$		18.	Parsec' is the unit of:		
6.	Dimensional formula formula			(a) time	(b) distance	
	(a) $[M L^2 T^{-1}]$	(b) $[M^{-1}L^2T^{-3}]$		(c) frequency	(d) angular	
7	(c) $[M^{-1}LT^{-2}]$		10	T1 . C41 . 1;	acceleration.	
7.	Which of the following variable?	is dimensional	19.	The ratio of the dimen		
		(h)		constant and that of medimensions of:	oment of thertia is the	
	(a) force	(b) exponential e(d) velocity of light in		(a) velocity	(b) angular	
	(c) angle	vacuum.		(a) velocity	momentum	
8.	Momentum per unit vo			(c) time	(d) frequency.	
0.	(a) [ML T ⁻¹]	(b) [ML T ⁻²]	20	The magnetic moment		
	(a) [ML ⁻² T ⁻¹]	(d) [M L ² T ⁻¹]	20.	(a) [LA]	(b) [L ² A]	
9.				$\begin{array}{c} \text{(c) } [LT] \\ \text{(c) } [LT^{-1}A] \end{array}$	(d) $[L^{2}T^{-1}A^{-1}]$	
٠.	The dimensional formula of pressure gradient is		21	Dimensions of electrical resistance is:		
	(a) $[M^0 L T^{-1}]$	(b) $[M L^0 T^{-1}]$	21.	(a) $[M L^2 T^{-3} A^{-1}]$		
	(c) $[M L^2 T^{-2}]$	(d) [M0L0T]		(c) $[M L^3 T^{-3} A^{-2}]$	(d) $[M^{-1}L^3T^3A^2]$	
10.	The number of signific		22.	In an electrical circuit		
	(a) 1	(b) 3		which of the following		
	(c) 4	(d) 2	A	dimensions of frequen		
11.	The number of signific			(a) LC	(b) $1/\sqrt{LC}$	
	(a) 3	(b) 4		(c) 1/(RC)	(d) R/L	
	(c) 5	(d) 2	23.	Taking into account th		
12.	2. What will be the number of significant figures			what is the value of $9.99m - 0.0099 m$?		
	in 0.00 7m ²	9769	TIE	(a) 9.9801 m	(b) 998 m	
	(a) 1	(b) 2		(c) 9.980 m	(d) 9.9m	
	(c) 3	(d) 4	24.	Dimensions of stress a	re	
13.	What is the dimensional	ıl formula of		(a) $[MLT^{-2}]$	(b) $[M L^2 T^{-2}]$	
	gravitational constant?	2 2 2		(c) $[M L^0 T^{-2}]$	(d) $[M L^{-1} T^{-2}]$	
	(a) $[M^{-1}L^3T^{-2}]$	(b) $[M^{-2}L^3T^{-2}]$	25.	The area of a rectangu		
	(c) $[M^{-1} L^2 T^{-2}]$	$(d) [M^{-1} L^3 T^{-1}]$		length 55.3 m and brea	adth 25 m after roundin	

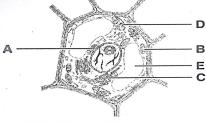
	(a) 138×10^{-1} (b) 1382	$(3) 3.0125 \times 10^{-23}$ $(4) 3.0125 \times 10^{-12}$		
	(c) 1382.5 (d) 14×10^{2}	36. Number of atoms in 4.25 g of NH ₃ is nearly		
		$(1) 1 \times 10^{23} \qquad (2) 1.5 \times 10^{23}$		
	CHEMISTRY	$(3) 2 \times 10^{23} \qquad (4) 6 \times 10^{23}$		
26.	The unit J Pa ⁻¹ is equivalent to	37. Which of the following contains the greatest		
	$(1) \mathrm{m}^3 \qquad \qquad (2) \mathrm{c} \mathrm{m}^3$	number of atoms?		
	$(3) d m^3$ $(4) m m^3$	(1) 1.0 g of butane (C_4H_{10})		
27	Significant figures in 0.00051 are:	(2) 1.0 g of nitrogen (N_2)		
_,.	(1) 5 (2) 3	(3) 1.0 g of silver (Ag)		
	$(3) 2 \qquad (4) 4$	(4) 1.0 g of water (H_2O)		
28	The proper value of significant figures in 38.0	38. The number of atoms present in 2.8 litres of		
20.	+0.0035+ 0.00003 is	diatomic gas is		
	(1) 38 (2) 38.0035	(1) 7.5×10^{22} (2) 6.023×10^{23}		
	(2) 38.00353 (3) 38.00353 (4) 38.0	$(3) 3.01 \times 10^{23} \qquad (4) 15 \times 10^{22}$		
20	Irrespective of the source, pure sample of	39. Given that one mole of N_2 , at NTP occupies		
29.	water always yields 88.89% mass of oxygen	22,4 litre the density of N_2 , is		
	and 11.11% mass of hydrogen. This is	(1) 1.25 g/L (2) 0.80 g/L		
	explained by the law of	(3) 2.5 g/L (4) 160 g/L 40. Modern atomic weight scale is based on		
	(1) Conservation of mass			
	(2) Constant composition	$(1)^{1} H$ $(2)^{12} C$ $(3)^{14} C$ $(4)^{16} C$		
	(3) Multiple proportions			
20	(4) Constant volume	41. Number of molecules in 100 ml of each of O ₂		
30.	One gram mole of a gas at NTP occupies 22.4	NH_3 and CO_2 at STP are		
	L. This fact was derived from	(1) The same		
	(1) Law of gaseous volumes	(2) In the order $NH_3 < O_2 < CO_2$		
	(2) Avogadro's hypothesis	(3) In the order $CO_2 < O_2 < NH_3$		
	(3) Dalton's atomic theory	(4) NH3 = $CO_2 < O_2$		
	(4) Law of constant proportions	42. The element whose atom has a mass of		
31.	A sample of calcium carbonate (CaCO ₃) has	$10.86 \times 10^{-26} \mathrm{kg}$ is		
	the following percentage composition:	(1) Boron (2) Calcium		
	Ca = 40% C = 12% 0 = 48% If the law of	(3) Silver (4) Zinc		
	constant proportions is true, the weight of	43. One gram of hydrogen is found to combine		
	calcium in 4 g of a sample of calcium	with 80 g of bromine, one gram of calcium		
	carbonate from another source will be	valency = 2 combines with 4 g of bromine.		
	(1) 0.016 g (2) 0.16 g	The equivalent weight of calcium is		
	(3) 1.6 g (4) 16 g	(1) 10 (2) 20		
32.	Which one of the following pairs of	(3) 40 (4) 80		
	compounds illustrates the law of multiple	44. Which of the following has smallest number		
	proportions?	of molecules?		
	(1) H2O Na2O (2) MgO, Na2O	(1) 11.2 L of O2 at NTP		
	(3) Na2O, BaO (4) SnCl2, SnCl4	(2) 8.0 g of O_2		
33.	20.8 g of BaCl ₂ , on reaction with 9.8 g of	(3) 0.1 mole of O_2		
	H ₂ SO ₄ produces 7.3 g of HCl and some	$(4) 2.24 \times 10^4 \text{ mL of } O_2$		
	amount of BaSO ₄ , The amount of BaSO ₄ ,	45. 0.4 g of dihydrogen is made to react with 7.1 g		
	formed is	of dichlorine to form hydrogen chloride. The		
	(1) 23.3 g (2) 20.8 g	volume of hydrogen chloride formed at 273 K		
	(3) 9.8 g (4) 10.4 g	and 1 bar pressure is		
34.	When 100 g of ethylene polymerizes to	(1) 4.54 L (2) 90.8 L		
	polyethylene according to equation	(3) 45.4 L (4) 9.08 L		
	$nCH_2 = CH_2 \longrightarrow +(-CH_2, -CH_2-)_n$	46. Vapour density of a metal chloride is 83. If		
	The weight of polyethylene produced will be	equivalent weight of the metal is 6, its atomic		
	$(1)\frac{n}{2}g$ (2) 100 g	weight will be		
		(1) 12 (2) 24		
	$(3)\frac{100}{n}g\tag{4} 100ng$	(3) 18 (4) 60		
35.	How many molecules are present in one gram			
	of hydrogen?			
	$(1) 6.023 \times 10^{-23}$ $(2) 6.023 \times 10^{-22}$			

47. In the final answer of the expression $\frac{(29.2-20.2)(1.79\times10^5)}{(29.2-20.2)(1.79\times10^5)}$ The number of 1.37

significant figures is

- (1) 1
- (2) 2

(3)3


- (4) 4
- 48. In the reaction, $N_2 + 3H_1 \rightarrow 2NH_3$, the ratio of volume of nitrogen, hydrogen and ammonia is 1:3:2. These figures illustrate the law of
 - (1) constant proportions
 - (2) Gay-Lussac
 - (3) multiple proportions
 - (4) reciprocal proportions
- 49. Irrespective of the source, pure sample of water always yield 88.89% mass of oxygen and 11.11% mass of hydrogen. This is explained by the law of
 - (1) Conservation of mass
 - (2) Constant composition
 - (3) Multiple proportion
 - (4) Constant volume
- 50. How many moles of electrons weigh one kg?
 - $(1) 6.023 \times 10^{23}$
 - $(2) \frac{1}{9.108} \times 10^{31}$ $(3) \frac{6.023}{9.108} \times 10^{54}$

 - $(4) \, \frac{1}{9.108 \times 6.023} \times 10^8$

BIOLOGY

- 51. The chief component of the middle lamella in plant cell is:
 - (a) Calcium
- (b) Potassium
- (c) Magnesium
- (d) Phosphorus
- 52. Cristae are found in which cell organelle?
 - (a) Nucleus
- (b) Mitochondrion
- (c) Chloroplast
- (d) Endoplasmic reticulum
- 53. Krebs' cycle occurs in:
 - (a) cytoplasm
- (c) mitochondria
- (b) chloroplast
- (d) both (a) and (b)
- 54. The smallest organelles in the cell are:
 - (a) lysosomes
- (b) ribosomes
- (c) microsomes
- (d) dictyosomes
- 55. Subunits in prokaryotic ribosome are:
 - (a) 60S-40S
- (b) 50S-30S
- (c) 40S-30S
- (d) 50S-20S
- 56. In Chloroplasts, chlorophyll is present in the
 - (a) stroma
- (b) Thylakods
- (c) Outer membrane
- (d) inner membrane
- 57. The non membranous organelles are:
 - (a) Nucleoli
- (b) centrioles
- (c) ribosomes
- (d) all of these
- 58. Ribosomal RNA is actively synthesized in
 - (a) lysosomes
- (b) nucleolus
- (c) Nucleoplasm
- (d) ribosomes
- 59. Who proposed the fluid mosaic model of plasma membrane?

- (a) Camillo Golgi
- (b) Robert Brown
- (c) Singer and Nicolson
- (d) Schleiden and schwann
- 60. The diagram of the ultrastructure of a plant cell is given below. Identify the functions of the organelle labelled A. B, C, D, E in the diagram:

- (a) A: Intracellular transport, B: Site of oxidative phosphorylation, C: Principle director of macro-molecular traffic, D: Site of photophosphorylation,
- (b) A. Site of photophosphorylation, B: Storage of cell sap, C Intracellular transport, D Site of oxidative phosphorylation, E Principle director of macro molecular traffic
- (c) A Storage of cell sap, B Site of oxidative phosphorylation, C molecular traffic, D E: Intracellular transport Principle director of macro-Site of photophosphorylation,
- (d) A: Principle director of macromolecular traffic, B. Site of oxidative phosphorylation, C Intracellular transport, D: Site of photophosphory-lation, E: Storage of cell sap
- 61. What is a tonoplast?
 - (a) Membrane boundary of the vacuole of plant cells
 - (b) Outer membrane of mitochondria
 - (c) Inner membrane of chloroplast
 - (d) Cell membrane of a plant cell
- 62. The Golgi complex plays a major role:
 - (a) as energy transferring organelles
 - (b) in digesting proteins and carbohydrates
 - (c) post translational modification of proteins and glycosidation of lipids
 - (d) in trapping the light and transforming it into chemical energy
- 63. Choose the matched ones.
 - (A) Vibrio

Rod-like bacteria

(B) Mesosome

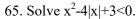
Helps in cell wall

Formation

- (C) Smooth Synthesis of lipids Endoplasmic reticulum
- (D) Vacuoles enzymes

Rich in hydrolytic

- (a) (B) and (C) only
- (b) (A) and (D) only (c) (A), (B) and (C) only


- (e) (B),(C) only
- 64. Which of these is/are not a property of facilitated transport?
 - A. Requires special membrane proteins
 - B. Highly selective
 - C. Uphill transport
 - D. Requires ATP energy
 - (a) A and B only
 - (b) C and D only
 - (c) A and C only
- (d) B and C only
- (e) B and D only
- 65. Rough endoplasmic reticulum is actively involved in:
 - (a) lipid synthesis
 - (b) protein synthesis
 - (c) hormone synthesis
 - (d) carbohydrate synthesis
- 66. Which one of the following cell organelles is enclosed by a single membrane?
 - (a) Nuclei
- (b) Lysosomes
- (c) Chloroplasts
- (d) Mitochondria
- 67. A cell organelle containing hydrolytic enzymes is
 - (a) Ribosome
- (b) Mesosome
- (b) Lysosome
- (d) Microsome
- 68. The term mitochondria was coined by:
 - (a) Palade
- (b) Benda
- (c) Altman
- (d) de Duve
- 69. The Golgi apparatus:
 - (a) is found only in animals.
 - (b) is found in prokaryotes.
 - (c) is a site of rapid ATP production.
 - (d) modifies and packages proteins.
- 70. What are the sac-like reticulum? structures of endoplasmic
 - (a) Cristae
- (b) Tubules
- (c) Cisternae
- (d) Thylakoids
- 71. Schleiden and Schwann proposed:
 - (a) phenomenon of Brownian movement
 - (b) protoplasm as a physical basis of life
 - (c) cell theory or cell doctrine
 - (d) none of the above
- 72. Flagella of prokaryotic and eukaryotic cells differ in:
 - (a) Microtubular organization and function
 - (b) Type of movement and placement in cell
 - (c) Location in cell and mode of functioning
 - (d) Microtubular organization and type of movement
- 73. The term lysosome was coined by:
 - (a) Palade
- (b) Benda
- (c) Altman
- (d) de Duve
- 74. Which of these is wrongly matched?
 - (a) Chloroplasts chlorophyll
 - (b) Elaioplasts
- (c) Chromoplasts carotenoids
- (d) Amyloplasts
- carbohydrates
- (e) Aleuroplasts
- proteins

- 75. The arrangement of outer and central microtubules in a cilium is called:
 - (a) 9+2 pattern
- (b) 8+2 pattern
- (c) 9+1 pattern
- (d) 8+1 pattern

MATH

- 51. Solution of |3-x| = x 3 is
 - (a) x < 3
- (b) x>3
- (c) $x \ge 3$
- (d) $x \le 3$
- 52. Solution of 0 < |3x+1| < 1/3 is
 - (a) (-4/9, -2/9)
- (b) [-4/9, -2/9]
- (c) (-4/9,-2/9)-{-1/3}
- (d) $[-4/9,-2/9]-\{-1/3\}t$
- 53. Solution of $\left|\frac{1}{x} 2\right| < 4$ is
 - (a) $(-\infty, -1/2)$ (b) $(1/6, \infty)$
 - (c) (-1/2,1/6)
- (d) $(-\infty, -1/2) \cup (\frac{1}{6}, \infty)$ 54. If $a^x = b$, $b^y = c$ and $c^z = a$ than find the value xyz.
 - (a) 1
- (b) 2
- (c)0
- (d) 3
- 55. Solve $\log_4^8 + \log_4(x+3) \log_4(x-1) = 2$
 - (a) -5
- (b) 0.05
- (c) 0.5
- (d) 5
- 56. Solve $\log(-x) = 2\log(x+1)$

- 57. Solve $\log_2(x-1) > 4$
 - (a) x > 17
- (b) x < 17
- (c) $x \le 17$
- (d) $x \ge 17$
- 58. The value of $\frac{log_3 135}{\cdot}$ $\frac{\log_3 5}{\log_{405} 3}$ is
 - (a) 2
- (b) 3
- (d) none of these (c) 4 59. The value of $49^{(1-\log_7 2)} + 5^{-\log_5 4}$ is
 - (a) 27/2
- (b) 25/2
- (c) 625/16
- (d) none of these
- 60. If $a = log_{12}18$ and $b = log_{24}54$ then the value of ab + 5(a-b) is
 - (a) 0
- (b) 4
- (c) 1 (d) none of these 61.If $(4)^{\log_9 3} + (9)^{\log_2 4} = (10)^{\log_x 83}$, then x is
- equal to
- (b) 3
- (a) 2 (c) 10
- (d) 30
- 62. Solve x^2 -x-2 > 0
 - (a) $(-\infty, 2) \cup (2, \infty)$
 - (b) $(-\infty, -1) \cup (2, \infty)$ (d) $(-\infty,1)$ \cup $(3,\infty)$
 - $(c)(-\infty,3)\cup(2,\infty)$
- 63. Solve $x(x+2)^2(x-1)^5(2x-3)(x-3)^4 \ge 0$.
 - (a) $[0,1] \cup [\frac{3}{2}, \infty)$ (b) $[2,1] \cup [\frac{3}{2}, \infty)$ (c) $[3,1] \cup [\frac{3}{2}, \infty)$ (d) $[4,1] \cup [\frac{3}{2}, \infty)$
- 64. Solve |x-3+|x-2|=1.
 - (a) $2 \ge x \le 3$
- (b) $2 \ge x \ge 3$
- (c) $2 = x \le 3$
- (d) $2 \le x \le 3$

(a)
$$x \in (-3, -1) \cup (1,3)$$

(b)
$$x \in (3, -1) \cup (1,3)$$

(c)
$$x \in (-3,1) \cup (1,3)$$

(d) none of these

66. The value of 7 log

$$\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right) + 3\log\left(\frac{81}{80}\right)is$$

(a) 0

(c) log 2

(d) log 3

67. $\log |b| =$

(a) log a

(b) log |a|

(c) - log a

(d) none of these

68. log₄18 is

(a) rational

(b) irrational

(c) prime

(d) composite

(c) prime (d) composite
69. Solve
$$(x^{log}_{10^3})^2 - (3^{log}_{10^x}) - 2 = 0$$

(a) $10^{log}_{3^2} = x$ (b) $10^{log}_{4^2} = x$

(a)
$$10^{\log_{3^2}} = x$$

(b)
$$10^{\log_{4^2}} = x$$

$$(c)10^{log}8^2 = x$$

(d)
$$10^{\log_{16^2}} = x$$

70. Find the value of $81^{\left(\frac{1}{\log^{53}}\right)} + 27^{\log_{936}} + 4^{\frac{1}{\log_{7}9}}$

(a) 890

(b) 790

(c) 105

(d) 690

71 The value of $Log_5y_2y_3log_2512$ is

(a) 1

(b) 0

(c) -1

(d) 10

72.
$$\log_2(3x-2) = y_{\frac{1}{2}x}$$

(a) x=1

(b) x=2

(c) x=3

(d) x = 4

73. If $x = \frac{1}{2} \log_k b = \frac{1}{3} \log_b c = \frac{1}{4} \log_c d$, then $\log_k d$ is

(a) $6x^3$ (b) $2x^3$

(a) $6x^{3}$

(b) $2x^{3}$

(c) $12x^3$

(d) $24x^3$

74. The value of $49^{log_{6^{18}}}$ ($3^{log_{6^3}}$

(a) 4

(c) 6

75.
$$\left(x - \frac{1}{2}\right)^3 \left(x - \frac{1}{3}\right)^2 \left(x - \frac{1}{5}\right) = 0$$

(a)
$$x \in (-\infty, \frac{1}{5}] \cup \left[\frac{1}{2}, \infty \cup \left\{\frac{1}{3}\right\}\right]$$

(b)
$$x \in (-\infty, \frac{1}{5}] \cup \left[\frac{1}{2}, \infty \cup \left\{\frac{1}{2}\right\}\right]$$

(c) 1

(d) none of these

